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INVESTMENT DECISIONS WITH STOCHASTIC AND

FUZZY

Invostmont decisions of a firm are important
tloolglons as they determine its earning
ganorating capacity and thereby, ultimately
fta long term solvency. Such decisions
Involvo allocation of a firm's resources
nmong various fixad assets with an objective
ol maximising sharcholdors' vaiuo. These
tloolslona aro undoriakon In a highly complex
ant unoonnln onvironmont that makes them
axlromaly dlffloult and rlsky. Not only that,
tha Informatlon avallable I8 of hoterogensous
naturo. 8Inco ouch doclslons have futuristic
dimonslons, It Is always plausible to assume
lhat some avallable information may be
stochastic and some may be fuzzy in
nature’. At present, decision-makers usually
Ignore fuzzy information and make decisions
on the basis of stochastic information or
make some unrealistic assumptions to
ponvert fuzzy information to stochastic
Information so as to use the existing tools
.ol Probability Theory. Thus, in either case,
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it is difficult to expect sound investment
decisions. Therefore, decision-makers should
be equipped with a model, which allows
them to incorporate stochastic as well as
fuzzy information and process them in an
integrated manner for more meaningful
investment decisions. An attempt is made
here to suggest a mathematical programming
model - Possibilistic-Chance-Constrained
Model, that can incorporate both stochastic
as well as fuzzy information.

What follows is planned as thus: Section-|
introduces the model; Section-Il discusses
how to convert possibilistic constraint and
possibilistic - chance constraint into crisp

constrainst; in Section-lll, a numerical
example is taken; and finally, conclusion.
SECTION-I

The model, Possibilistic-Chance-Constrained
Model, suggested for investment decisions

*Roador In Commerce, Shri Ram College of Commerce, University of Delhi, Delhi.
1 For proclse distinction between stochastic information and fuzzy information, see Gupta, C.P. (1992).
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is a mathematical programming model
in that the relevant objective function is to
be optimised subject to a number of
constraints about which information available
may be crisp certain, stochastic and/or
fuzzy. More precisely, one can make use of
it when

(i) the firm's objective is one and crisp;
and,

(i) information available about constraints
is of crisp certain, stochastic and
possibilistic' nature.

It may me stated as thus,
Optimize CX
Subject to

G(X)
X =20

[FSMP]

And, G(X) may be of any of the following:
n
Prob. (Xax < 5)2 pj=1,2,...,m (Crisp Constraint)

n
(Zaxis<sb)>pj=12.,m
i=1 (Chance Constraint)

n
Poss(©px<b )>aj=1.2,...m (Possibilistic
i=1 Constraint)

"

n
Poss(Prob (.®1€1ii x, <B) =p) > a j=1,2,..m
I=
(Possibilistic-Chance-Constraint)
where

b follows an independent and normal
probability distribution with parameters -
(mg, s); m = mean and s = standard
deviation;

o, = the degree of probability that |
~straint is not violated,;

BUSINESS ANALYST

a, and b, are fuzzy numbers.?

a, is the degree of possibility by which j"
constraint should be satisfied.
¥ is fuzzy summation.

One can have the following interpretations
of the above constraints:

1. Crisp Constraint: Such a constraint
should be satisfied in a strict sense and
they are hard constraints.

2. Stochastic Constraint: Such a con-
straint should be satisfied with at least
p probability.

3. Possibilistic Constraint: Such a con-
straint should be satisfied with at least
o possibility and they are soft con-
straints.

4. Possibilistic-Stochastic Constraint:
Such a constraint should be satisfied
with at least o possibility of having
probability of not violating a constraint
is at least p.

Such a model will be finally converted into
a crisp Linear Programming model. Crisp
constraints do not require any transformation
and they come into the final model'as such.
Chance constraints can be converted into
crisp constraints following Byrne et.el.
[1971]). However, the conversion of
possibilistic constraints and possibilistic-
chance constraints into crisp constraints is
discussed below.

1 On every fuzzy set, one can easily define a
possibility function in a natural way and thereby, a
fuzzy information can be transformed into possibilistic
one. Since, such a natural transformation is always
available, here we have used the terms-fuzzy
information and possibilistic information -
inerchangeably. For details, see Zadeh [1978].

2 For simplicity, they are assumed to be symmetrical
triangular fuzzy numbers (STFN)
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SECTION-II

Section-1l discusses conversion of
possibilistic constraint and possibilistic -
chance constraint. First, we take how to
convert a possibilistic constraint into a crisp
constraint. For that, we state the following
two important results:

Result #1: Let 1 be a STFM, C be a crisp
ordinary real number and ® be fuzzy
multiplication. Then, C ® n will also be a
STFM.

Result #2: Let i and m be two STFMs and
@ be fuzzy addition. Then, " @ m will also
be a STFM.

If we assume that x's are to be crisp then
from the above stated results, we get

n
@é“ x as a STFM.

Further, to have a logicél comparison

between two fuzzy numbers, i.e., @é X
i

i N

=1
and b, we follow two definitions due to
Dubois and Prade (1980):

Definition #1: Let M and N be two
fuzzy numbers. The degree of possibility of
M < N is defined as:

Poss (M < N) = Sup min ( wgi(x) #g(y))
XyX <Y

8ince M and N are convex fuzzy sets, it can
bo saen from Figure-1 that

Poss (M<N) = 1 iff m < n where ug (m)
= pR(n) = 1

and
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Poss(M=R) = hgt(M N) =pz(d) =p(d)
Definition #2; Let M and N be two fuzzy
numbers. The degree of possipility of M=N",
is defined as

Poss (M=N)=Min. (Poss (M<N), Poss (M>N))

P«f >

<

0 m d n §
Figure-1

To see the implications of (Definition #1) and
(Definition #2) for STFN and for (FSMP), we
consider two STFNs, as shown in Figure-2.
From (Définition #1), we obtain Poss (B<A),

rAH,) = ug (hy) = .

b2

Figure-2

We note that h, is obtained at a point where
HA '(.) is decreasing and ui(.) is increasing.
Thus, the intersection point' gives the
following equality:

a,+(1-od =b,-(1-0)d, (1)
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where
d, = spread of A
and, d, = spread of B

But, if we wish that Poss (B<A) > a then,
as |ndicated hy Figure-2, we must have

a,+(1-0)d, >b, - (1 -a)d, (2
Thus, from (2), we can conclude that

() Poss (A<B) > & ¢ a, - (1-0)d,< <b, +

(1-o)d, (3 1)
(b) Poss (A2B) za «a, + (1-0)d b, - (1 -)d,
(3.2)

Also, from (Definition #2), we obtain

Poss (A=B) = Min (Poss(A<B), Poss (A>B))

Thus,

Poss (AzB) >0 < Poss (A<B) > o and Poss
(A>B) >

Therefore, about Poss (A=B)>a, we conclude
that

POSS(A—§) 20 &

(a) Poss (A<B)>o:@a - (1-o)d,<b+(1-0)d,

(b) Poss (A2B) » o ¢ a+(1 oc)d >bo (1- a)d
(4)

Thus, using results of (3.1), (3.2) and (4),

one can convert a possibilistic constraint

into a crisp constraint.

Now, we see how to convert a possibilistic-
chance constraint into a crisp constraint.
Consider first* chance part of possibilistic-
chance constraint. Since b is a random
variable (r.v.) in j’ .constraint; it can be
satisfied only in probabilistic sefise. Hence,
the firm has the following chance constraint:
n fa)
Prob ()&, x < b) > p, (5)
j=1
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But, .as &s are fuzzy numbers defining
possibility distributions, we assume that the
management further restricts (5) by a
possibilistic constraint. Thus, the new
constraint would mean 'the possibility that
the probability of not violating a constraint
is p, or more must be at least o".

n
Poss(Prob(@ijx;s t’)\,) 2p)>aj=12..m
i=1

Again, for simplicity, we assume that asare
STFNs.Since a s are STFNs, they induce a

_possibility dxstnlbutxon for

Prob(@ax < b) 2P,

Now, let's see betow how it is induced.

Consider a random variable (r.v.) x having
a normai probability distribution with
parameters (m,s). Then,

Prob.(x<A)=Prob.(x<(A-m)/s) = F(z)  (6)

where z is a standard normal variate with
parameters (1,0). In (6), if A is a fuzzy
number, then z and F(z) will also be fuzzy
numbers, Z and F(Z) respectively. From
Result (#1) amd Result (#2), we can
conclude that'if A is a STFN and, m and s
are crisp numbers, then Z = ((A - m)/s) will
also be a STFN. Further, the membership-of
Z and F(Z) can be detérmined by using
Zadeh's Extension Principle as thus:

up2) = pp(alz=((a-mys); and (7)
He(F(2)) = 1(Z | F(2) holds)

i

=, (alF ((@am/s) holds) )
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Following Wierzchen (1988), we as;sume:
() Px <A)=1-P(x > A) and )]
(HPx=A =0 (10)

(9) and (10) are reasenable -assumptions
when x follows a normal probability distribution
in the sense that their crisp analogues are
always true, i.e.

(i Px < A)=1-P(x > A) and;
(i) P(x = A) = 0.

The assumptions (9) and (10) have foliowing
two important implications for the Model:

(i) a constraint of the nature
n A

Poss (Prob (@1 8x<b)=p> o
{=

can be modeled on same lines are
Poss (Prob ( @aII X > ‘) =p) 20

and;

(ii) in our mode!, no cohstraint will be of the
following nature:

n
Poss (Prob ((©) ax, =
j=1
Here, first we see how a constraint

6)2p) = o

IV

n
Poss (Prob ( () &x > b) >
i=1

can be converted into equivalent crisp
constralnt using the assumptions made
above. For that, we consider

Poss (F(2) 2p) 2 & (11)
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where F(Z) is a STFN representing Prob. (2
= A-m/)s) in which A is a STFN, m and s
are respectively mean and standard deviation
of a normal probability ‘distribution and; p
and o are ordinary crisp numbers. Then,
from Result (#1), we obtain that

Poss (F(22p) = Sup pf(z) (F(2))
Fi2) = p
= Sup p3 (2) (12)
z > (F'(p))
= Sup nx(a)
((a-m)/s) = F(p)

Since p is a erisp number in (11), using (12)
and (3.2), we obtain for Poss (F(Z)>p) > o

- the following crisp equivalent:

{ ((a, + (1+e)d,) - m)/s} > Fi(p)
= (a, +(1-0)d,) > m + sF(p) (13)

Likewise and using the assumption that
P(x<A) 1- P (x>A), we can obtain for Poss
((1-F(2)) = p) 20 the following crisp equivalent
{((a, + (1-a)d,) - m)/s} > F'(1-p)

= (a, - (1-a)d,) > m + sF'(1-p) (14)

Using the results of this section, we can
convert our model (FSMP) into the following
crisp L.P, Modetl:

Optimize CX

Subject to

Z ((a )u (1 -a*,) (da)xijs(bo)i'*'(" 'Cl) dbi

=1
[FSMP##1)

n
((a) + (1 a)(d)) X >m +sF’(p)

ij =
J—-

X>0
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where’ m mean of a normally distributed r.v. b

(a,); = mean value of & , ; N s = standard deviation of b

(d)); = spread of 5'1 : ' Now, one can solve [FSM?’#ﬂusing simplex
(b) = mean value of b ; . v method. lts application’is illustrated below.
(dy), = spread of b ; : - '
Section-lll

NUMERICAL ILLUSTRATION
To illustrate the application of the model, we consider the problem given in Table-I.

PROJECTS .. _ bi
i 1| 2 3 4 5 6 7 1.8 19
NPV (Rs) 14 17 17 15 40 12 40 10 | 12
Environment Pollution
(Points) [EP] . 121 63 2.7 2.2 8.8 2.0 5.7 5'.9 3.2 }12 points
Sales [Period-i] 14 30 | 13| 11 53 | 10| 32| 21| 12 [Rs 60
(Rs [SP-] , .
Sales Period-Il] 15 42 16 12 52 14 34 28 | 21 |Rs 60
(Rs [SP-1]) '
Casoutflow 127 54 .6 6 30 6 48 36 | 18 |Rs 60
(Periiod-1] (Rs) [SP-I]
Cashoutflow 3 7 6 2 35 6 4 3 3 Rs 40
[Period-1}{Rs)[SP-I1)
Technical Expertise . :
(days) [TE] 20{ 80 | 18| 14 | 88| 15| 74 | 60 | 28 |110 days
Net Working 5 1 7 4 3 5 i2 9 5 Rs 25
Capital (Rs) [NWC]
Table-I (Rs. are in Crores) .

The exact nature of the constraints is stated  possibilistic constraints and possibilistc -
in the Table-1l and the fuzzy coefficients of  chance constraints are given in the Table-IIi.
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OBJECTIVE MAX.NPV(X)
c 1. Environment ,Pqllution Poss(EP(X):f2¢d.2)_>_0.8
° 2. Sales Period | Poss(SP-I(X)260+10]20.9
$ 3. Sales Period Il Poss(SP-I)(X) > 69+15)>0.7
R 4. Cashoutflows Period 1 CF-i(X) < 60
f 5. Cashoutflows Period Il CF-HI(X) < 40
A
? 6. Technical Expertise Poss(Prob(TE(X) < b,)20.99)=0.5
8 7. Net Working Capital Poss(Prob (NWC(X)"< b;)>0.95)20.6
Table-ll
Constraints | & a, a, a, ay &, |8, a, a,
EP(X) 1.2+0.2]6.3+0.3|2.740,3| 2.2:0.2 8.840.4! 2.04+0.1| 5.7+0.3} 5.9+0.1{ 3.2+0.2
8SP-I{X) 14+2 [0+3 13+3 1142 53+3, | 1042 | 3243 é114 L1242
SP-li(X) 1642 4244 [16+2 12+2 52+2 1443 3442 28+3 2142
TE(X) 20+2 [80+5 [18+2 1442 8846 1513 721’14 60+3 28+2
NWC(X) 5+1 1141 7+2 4+0.5 | 3+0.5 | 51 12+2 [ 9+1 1 5+05
Table-fll
Using the results of Section-Il, we obtain the + 12.2x9 >59

equivalent crisp LP model of the. above
investment problem as thus:

MAX. NPV(X) =14x1+17x2 + 17x3 + 15x4
+ 40x5 + 12%6 + 14x7 + 10x8 + 12x9
suibject to

EP(X)

1.16%1 + 6.24x2 + 2.64x3 + 2.16x4 +8.72x5
+ 1.98x6 + 5.64x7 +5.88x8 + 3.16x9 <
12.04

1.24x1+6.36x2 + 2,76x3 + 2.24x4 + 8.88x5
+ 2.02x6 + 5.76X7 + 5.92x8 + 3.24x9
> 11.96 )

SP-1(X): 14.2x1 + 30.3x2 + 13.3x3 + 11.2x4
+ 53.5x5 + 10.2x6 + 32.3x7 + 21.4x8

SP-1I(X): 15.9x1 + 43.2%2 + 16:6%3 + 12:6x4
+ 53.2x5 + 14.9x6 + 34.6xX7 + 28.9x8
+#2169 » 645

CF-I(X): 12x1 + 54x2 + 6x3 + 6x4 + 30x5
+ BX6 + 48X7 + 36x8 + 18x9 < 60

CF-H(X):3x1 + 7x2 + 6xX3 + 2x4 + 35x5 +
6x6 + 4X7 + 3x8 + 3x9 < 40

TE(X): 19x1 # 77.5%2 + 17x3 + 13x4 + 85x5
+13.5%6 + 72x7 + 58.5x8 + 27x9< 125

NWC(X): 4.6x1 + 10.6x2 + 6.2x3 + 3.8x4 +
2.8x5 + 4.6x6 + 11.2x7 + 8.6x8 + 4.9x9
<27

x1, X2,..., X9 2 0
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The above model is solved and the results
are summarized in Table-1V.

Projects Values | Goal Achievément
1 2.9363 NPVX) Rs. 98.29
2 0 Constraints Value Possibility
of their
satisfaction
3 o]
4 34511
! EP(X) Points 12.04 0.80
5 0.1353
SP-I(X) Rs. 87.59 100
6 0
SP-l(X) Rs. 97.37 1.00
7 0
CF-l(X) Rs. 60.00
8 0
CF-li{(X) Rs.20.45 -
9 0
TE(X) Days 112.15 0.785
NWC(X)  Rs.27.00 0600
Table-IV
CONCLUSION

Thus, we find that the model suggested is
capable of integrating all kinds of informatidn
- certain, probabilistic and fuzzy in.an
investment decision. Since the different
kinds of uncertainties investors are facing
in present world, we believe that such an
attempt would allow them to process
heterogeneous information available in one

BUSINESS ANALYST

model and that to in an integrated way.
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